

Welcome to PyLMNN’s documentation!

Contents:

	PyLMNN
	Installation

	Dependencies

	Optional dependencies

	Usage

	References

	License and Contact

	API Reference
	pylmnn.lmnn module

	pylmnn.utils module

	pylmnn.bayesopt module

Indices and tables

	Index

	Module Index

	Search Page

PyLMNN

PyLMNN is an implementation of the Large Margin Nearest
Neighbor algorithm for metric learning in pure python.

This implementation follows closely the original MATLAB code by Kilian
Weinberger found at https://bitbucket.org/mlcircus/lmnn. This version
solves the unconstrained optimisation problem and finds a linear
transformation using L-BFGS as the backend optimizer.

This package can also find optimal
hyper-parameters for LMNN via Bayesian Optimization using the excellent
GPyOpt [http://github.com/SheffieldML/GPyOpt] package.

Installation

The code was developed in python 3.5 under Ubuntu 16.04 and was also tested under Ubuntu 18.04 and python 3.6. You can clone
the repo with:

git clone https://github.com/johny-c/pylmnn.git

or install it via pip:

pip3 install pylmnn

Dependencies

	numpy>=1.11.2

	scipy>=0.18.1

	scikit_learn>=0.18.1

Optional dependencies

In case you want to use the hyperparameter optimization module, you should also install:

	GPy>=1.5.6

	GPyOpt>=1.0.3

Usage

Here is a minimal use case:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris

from pylmnn import LargeMarginNearestNeighbor as LMNN

Load a data set
X, y = load_iris(return_X_y=True)

Split in training and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7, stratify=y, random_state=42)

Set up the hyperparameters
k_train, k_test, n_components, max_iter = 3, 3, X.shape[1], 180

Instantiate the metric learner
lmnn = LMNN(n_neighbors=k_train, max_iter=max_iter, n_components=n_components)

Train the metric learner
lmnn.fit(X_train, y_train)

Fit the nearest neighbors classifier
knn = KNeighborsClassifier(n_neighbors=k_test)
knn.fit(lmnn.transform(X_train), y_train)

Compute the k-nearest neighbor test accuracy after applying the learned transformation
lmnn_acc = knn.score(lmnn.transform(X_test), y_test)
print('LMNN accuracy on test set of {} points: {:.4f}'.format(X_test.shape[0], lmnn_acc))

You can check the examples directory for a demonstration of how to use the
code with different datasets and how to estimate good hyperparameters with Bayesian Optimisation.

Documentation can also be found at http://pylmnn.readthedocs.io/en/latest/ .

References

If you use this code in your work, please cite the following
publication.

@ARTICLE{weinberger09distance,
 title={Distance metric learning for large margin nearest neighbor classification},
 author={Weinberger, K.Q. and Saul, L.K.},
 journal={The Journal of Machine Learning Research},
 volume={10},
 pages={207--244},
 year={2009},
 publisher={MIT Press}
}

License and Contact

This work is released under the 3-Clause BSD License [https://opensource.org/licenses/BSD-3-Clause].

Contact John Chiotellis
:envelope: for questions, comments
and reporting bugs.

API Reference

pylmnn.lmnn module

Large Margin Nearest Neighbor Classification

	
class pylmnn.lmnn.LargeMarginNearestNeighbor(n_neighbors=3, n_components=None, init='pca', warm_start=False, max_impostors=500000, neighbors_params=None, weight_push_loss=0.5, impostor_store='auto', max_iter=50, tol=1e-05, callback=None, store_opt_result=False, verbose=0, random_state=None, n_jobs=1)

	Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Distance metric learning for large margin classification.

	n_neighborsint, optional (default=3)

	Number of neighbors to use as target neighbors for each sample.

	n_componentsint, optional (default=None)

	Preferred dimensionality of the embedding.
If None it is inferred from init.

	initstring or numpy array, optional (default=’pca’)

	Initialization of the linear transformation. Possible options are
‘pca’, ‘identity’ and a numpy array of shape (n_features_a,
n_features_b).

	pca:

	n_components many principal components of the inputs passed
to fit() will be used to initialize the transformation.

	identity:

	If n_components is strictly smaller than the
dimensionality of the inputs passed to fit(), the identity
matrix will be truncated to the first n_components rows.

	numpy array:

	n_features_b must match the dimensionality of the inputs passed to
fit() and n_features_a must be less than or equal to that.
If n_components is not None, n_features_a must match it.

	warm_startbool, optional, (default=False)

	If True and fit() has been called before, the solution of the
previous call to fit() is used as the initial linear
transformation (n_components and init will be ignored).

	max_impostorsint, optional (default=500000)

	Maximum number of impostors to consider per iteration. In the worst
case this will allow max_impostors * n_neighbors constraints to be
active.

	neighbors_paramsdict, optional (default=None)

	Parameters to pass to a neighbors.NearestNeighbors instance -
apart from n_neighbors - that will be used to select the target
neighbors.

	weight_push_lossfloat, optional (default=0.5)

	A float in (0, 1], weighting the push loss. This is parameter μ
in the journal paper (See references below). In practice, the objective
function will be normalized so that the push loss has weight 1 and
hence the pull loss has weight (1 - μ)/μ.

	impostor_storestr [‘auto’|’list’|’sparse’], optional

	
	list :

	Three lists will be used to store the indices of reference
samples, the indices of their impostors and the (squared)
distances between the (sample, impostor) pairs.

	sparse :

	A sparse indicator matrix will be used to store the (sample,
impostor) pairs. The (squared) distances to the impostors will be
computed twice (once to determine the impostors and once to be
stored), but this option tends to be faster than ‘list’ as the
size of the data set increases.

	auto :

	Will attempt to decide the most appropriate choice of data
structure based on the values passed to fit().

	max_iterint, optional (default=50)

	Maximum number of iterations in the optimization.

	tolfloat, optional (default=1e-5)

	Convergence tolerance for the optimization.

	callbackcallable, optional (default=None)

	If not None, this function is called after every iteration of the
optimizer, taking as arguments the current solution (transformation)
and the number of iterations. This might be useful in case one wants
to examine or store the transformation found after each iteration.

	store_opt_resultbool, optional (default=False)

	If True, the scipy.optimize.OptimizeResult object returned by
minimize() of scipy.optimize will be stored as attribute
opt_result_.

	verboseint, optional (default=0)

	If 0, no progress messages will be printed.
If 1, progress messages will be printed to stdout.
If > 1, progress messages will be printed and the iprint
parameter of _minimize_lbfgsb() of scipy.optimize will be set
to verbose - 2.

	random_stateint or numpy.RandomState or None, optional (default=None)

	A pseudo random number generator object or a seed for it if int.

	n_jobsint, optional (default=1)

	The number of parallel jobs to run for neighbors search.
If -1, then the number of jobs is set to the number of CPU cores.
Doesn’t affect fit() method.

	components_array, shape (n_components, n_features)

	The linear transformation learned during fitting.

	n_neighbors_int

	The provided n_neighbors is decreased if it is greater than or
equal to min(number of elements in each class).

	n_iter_int

	Counts the number of iterations performed by the optimizer.

	opt_result_scipy.optimize.OptimizeResult (optional)

	A dictionary of information representing the optimization result.
This is stored only if store_opt_result is True. It contains the
following attributes:

	xndarray

	The solution of the optimization.

	successbool

	Whether or not the optimizer exited successfully.

	statusint

	Termination status of the optimizer.

	messagestr

	Description of the cause of the termination.

	fun, jacndarray

	Values of objective function and its Jacobian.

	hess_invscipy.sparse.linalg.LinearOperator

	the product of a vector with the approximate inverse of the
Hessian of the objective function..

	nfevint

	Number of evaluations of the objective function..

	nitint

	Number of iterations performed by the optimizer.

>>> from pylmnn import LargeMarginNearestNeighbor
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> lmnn = LargeMarginNearestNeighbor(n_neighbors=3, random_state=42)
>>> lmnn.fit(X_train, y_train)
LargeMarginNearestNeighbor(...)
>>> # Fit and evaluate a simple nearest neighbor classifier for comparison
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> knn.fit(X_train, y_train)
KNeighborsClassifier(...)
>>> print(knn.score(X_test, y_test))
0.933333333333
>>> # Now fit on the data transformed by the learned transformation
>>> knn.fit(lmnn.transform(X_train), y_train)
KNeighborsClassifier(...)
>>> print(knn.score(lmnn.transform(X_test), y_test))
0.971428571429

Warning

Exact floating-point reproducibility is generally not guaranteed
(unless special care is taken with library and compiler options). As
a consequence, the transformations computed in 2 identical runs of
LargeMarginNearestNeighbor can differ from each other. This can
happen even before the optimizer is called if initialization with
PCA is used (init=’pca’).

	1

	Weinberger, Kilian Q., and Lawrence K. Saul.
“Distance Metric Learning for Large Margin Nearest Neighbor
Classification.”
Journal of Machine Learning Research, Vol. 10, Feb. 2009,
pp. 207-244.
http://jmlr.csail.mit.edu/papers/volume10/weinberger09a/weinberger09a.pdf

	2

	Wikipedia entry on Large Margin Nearest Neighbor
https://en.wikipedia.org/wiki/Large_margin_nearest_neighbor

	
fit(X, y)

	Fit the model according to the given training data.

	Xarray-like, shape (n_samples, n_features)

	The training samples.

	yarray-like, shape (n_samples,)

	The corresponding training labels.

	selfobject

	returns a trained LargeMarginNearestNeighbor model.

	
transform(X)

	Applies the learned transformation to the given data.

	Xarray-like, shape (n_samples, n_features)

	Data samples.

	X_embedded: array, shape (n_samples, n_components)

	The data samples transformed.

	NotFittedError

	If fit() has not been called before.

	
pylmnn.lmnn.make_lmnn_pipeline(n_neighbors=3, n_components=None, init='pca', warm_start=False, max_impostors=500000, neighbors_params=None, weight_push_loss=0.5, impostor_store='auto', max_iter=50, tol=1e-05, callback=None, store_opt_result=False, verbose=0, random_state=None, n_jobs=1, n_neighbors_predict=None, weights='uniform', algorithm='auto', leaf_size=30, n_jobs_predict=None, **kwargs)

	Constructs a LargeMarginNearestNeighbor - KNeighborsClassifier pipeline.

See LargeMarginNearestNeighbor module documentation for details.

	n_neighbors_predictint, optional (default=None)

	The number of neighbors to use during prediction. If None (default)
the value of n_neighbors used to train the model is used.

	weightsstr or callable, optional (default = ‘uniform’)

	weight function used in prediction. Possible values:

	‘uniform’ : uniform weights. All points in each neighborhood
are weighted equally.

	‘distance’ : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.

	[callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.

	algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

	Algorithm used to compute the nearest neighbors:

	‘ball_tree’ will use BallTree

	‘kd_tree’ will use KDTree

	‘brute’ will use a brute-force search.

	‘auto’ will attempt to decide the most appropriate algorithm
based on the values passed to fit() method.

Note: fitting on sparse input will override the setting of
this parameter, using brute force.

	leaf_sizeint, optional (default = 30)

	Leaf size passed to BallTree or KDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.

	n_jobs_predictint, optional (default=None)

	The number of parallel jobs to run for neighbors search during
prediction. If None (default), then the value of n_jobs is used.

	memoryNone, str or object with the joblib.Memory interface, optional

	Used to cache the fitted transformers of the pipeline. By default,
no caching is performed. If a string is given, it is the path to
the caching directory. Enabling caching triggers a clone of
the transformers before fitting. Therefore, the transformer
instance given to the pipeline cannot be inspected
directly. Use the attribute named_steps or steps to
inspect estimators within the pipeline. Caching the
transformers is advantageous when fitting is time consuming.

	lmnn_pipePipeline

	A Pipeline instance with two steps: a LargeMarginNearestNeighbor
instance that is used to fit the model and a KNeighborsClassifier
instance that is used for prediction.

>>> from pylmnn import make_lmnn_pipeline
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> lmnn_pipe = make_lmnn_pipeline(n_neighbors=3, n_neighbors_predict=3,
... random_state=42)
>>> lmnn_pipe.fit(X_train, y_train)
Pipeline(...)
>>> print(lmnn_pipe.score(X_test, y_test))
0.971428571429

pylmnn.utils module

pylmnn.bayesopt module

	
pylmnn.bayesopt.find_hyperparams(X_train, y_train, X_valid, y_valid, params=None, max_bopt_iter=12)

	Find the best hyperparameters for LMNN using Bayesian Optimisation.

	X_trainarray_like

	An array of training samples with shape (n_samples, n_features).

	y_trainarray_like

	An array of training labels with shape (n_samples,).

	X_validarray_like

	An array of validation samples with shape (m_samples, n_features).

	y_validarray_like

	An array of validation labels with shape (m_samples,).

	paramsdict

	A dictionary of parameters to be passed to the LargeMarginNearestNeighbor classifier instance.

	max_bopt_iterint

	Maximum number of parameter configurations to evaluate (Default value = 12).

	tuple:

	(int, int, int, int) The best hyperparameters found (n_neighbors, n_neighbors_predict, n_components, max_iter).

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pylmnn	

 	
 	
 pylmnn.bayesopt	

 	
 	
 pylmnn.lmnn	

 	
 	
 pylmnn.utils	

Index

 F
 | L
 | M
 | P
 | T

F

 	
 	find_hyperparams() (in module pylmnn.bayesopt)

 	
 	fit() (pylmnn.lmnn.LargeMarginNearestNeighbor method)

L

 	
 	LargeMarginNearestNeighbor (class in pylmnn.lmnn)

M

 	
 	make_lmnn_pipeline() (in module pylmnn.lmnn)

P

 	
 	pylmnn.bayesopt (module)

 	
 	pylmnn.lmnn (module)

 	pylmnn.utils (module)

T

 	
 	transform() (pylmnn.lmnn.LargeMarginNearestNeighbor method)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyLMNN’s documentation!

 		
 PyLMNN

 		
 Installation

 		
 Dependencies

 		
 Optional dependencies

 		
 Usage

 		
 References

 		
 License and Contact

 		
 API Reference

 		
 pylmnn.lmnn module

 		
 pylmnn.utils module

 		
 pylmnn.bayesopt module

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

